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Traveling waves with dispersive variability and time delay
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We first determine an approximate traveling wave profile for the Cook middeViurray, Mathematical
Biology I: An Introduction(Springer, New York, 2002 pp. 471-478for the case in which the number of
dispersers is small relative to the number of nondispersers. The results are consistent with the previous
linearized wavefront analysis that predicts, counterintuitively, that relatively few dispersers can drive the
population expansion wave with a wavespeed not too different from that for the case of a single dispersing
population as described by the Fisher equation. The method of solution differs from that used in the latter case
since here the dimensionless wavespeed is close to unity. We next generalize the Cook model to include
time-delay effects. While the Cook model, like the Fisher equation, does not adequately describe the wave of
advance during the Neolithic transition in Europe, we show that the generalized Cook model provides a close
agreement with the historical record.
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[. INTRODUCTION TWS'’s can be obtained by the same method used by Canosa
for the FE[10]; this is straightforward and does not lead to

The paradigm for describing the expansion of a coloniz-any surprises. We briefly present some of these results in the
ing or invading species is the Fisher equati®i) [1-4].  Appendix since they are relevant here for comparative pur-
Traveling wave solution§TWS’s) of this equation and a poses and do not appear to have been presented elsewhere.
variety of generalizationg5—10] have been studied and ap- Conversely, the results for smail i.e., when the population
plied in a number of ecological contexts. Despite considerconsists of relatively few dispersers, do provide unexpected
able attention, even the basic FE has resisted efforts to obtaiesults.
an exact analytic solution with the single exception of the Whenp is small, the wavespeed is still slightly more than
special solution found2] for dimensionless wavespead half the value of that for a population composed solely of
=5/,/6, which is greater than the minimum speegd,=2  dispersers and not the very small value that would be intu-
[11]. A great deal of success has been found with respect tiively expected. In Sec. II, we describe the Cook model and
the determination of qualitative properties of TWS's for thethen in Sec. Ill we obtain a TWS solution for the case of
FE beginning with the seminal work of Kolmogoraét al. ~ smallp where the Canosa perturbation solution is not appli-
[5] and a surprisingly good perturbation solution has alsccable (the parameter of smallness would be close to Gnity
been found10] using the inverse of the square of the dimen-In Sec. 1V, we generalize the Cook model by taking into
sionless wavespeed; ?, as the parameter of smallness.  account time-delay effecf$,7] and use this model to obtain

In the FE description the variability of the population with the speed describing the wave of population advance during
regard to its dispersal can be accounted for by using a diffuthe Neolithic transition in Europe. It has been shown previ-
sion coefficient taken as an average computed from the digusly[6,7] that including such effects in the FE model leads
persal probability-versus-distance distributimee, e.g., Eq. to good agreement with historical evidence for the wave of
(8) in [7]]. This implies that in a population composed of population advance during the Neolithic transition in Europe.
dispersers and nondispersers the relative proportions of eadMe conclude in Sec. V by showing that the result for the
of these subpopulations is space- and time-independent. wavespeed found here for the generalized Cook model also
different approach was taken by Co¢R] to account for agrees well with the historical record in describing the
dispersive variability by considering a model in which the Neolithic expansion in Europe.
proportion of dispersers is greatest at the wavefront. In this
model the population explicitly consists of distinct subpopu- Il. COOK MODEL

lations consisting of dispersers and nondispersers, each hav- ) o )
ing different birth rates. The resulting model has been stud- "€ Cook model and many of its qualitative properties are

ied in some detail2] and like the FE many of its qualitative diScussed in the monograph by Murrgy2] so we only
properties have been determined. In particular, the minimur"i€fly summarize the results we require here. The popula-
wavespeed of a TWS;,,,=1+p*2, with p<1 the probabil- tion is assumed to be composed of two distinct subpopula-
ity that a newborn is a disperser, follows from an analysis ofions. dispersers with density(x,t) and nondispersers with
the wavefront behavior that is more complicated than redensityv(x,t). These densities are described by FE's with
quired for the corresponding FE res{®]. For large allow- dlstlngt birth ratesr,r, , and no disperser diffusion. In di-
able values op, it has been pointed o{i2] that approximate Mensionless units
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whereD is the diffusion coefficient for the dispersefs,is TF
the population carrying capacity, and=[r,/(ry,+r,)],
these FE's are

o
~
[$;]

U= Uyt p(ut+o)[1-(utv)], (1a

vi=(1-p)(ut+ov)[1-(ut+v)], (1b)

Population Density
o

N (=)

w w

where we have now dropped the primes for convenience. For
a TWS we takez=x—ct with ¢ the dimensionless
wavespeed and look for solutionsu(x,t),v(X,t)
—u(z),v(2) so that Eqs(1) become

O0=cu,+u,,+tp(utv)[1-(u+tv)], (29
FIG. 1. Population as a function of wave varialae(----) nq
0=cv,+(1-p)(u+v)[1=(u+tv)]. (2b) 4 pl2n, =g+ p2, for p=0.01; (—) no+cy2n, for p=0.9. In

. . . . _both caseg,,,=1+p*>
As mentioned above, a detailed analysis of the Ilnearlzeg mn P

wavefront equationg2] indicates that the wave speed is 1, (1-y0)=0, the identical zeroth-order equation satisfied

bounded below bycn,=1+p"? For large values op<1, by the density in the Canosa expansion of the FE. The solu-

the waveform solution of Eqsi2) in terms of the trans- ion which satisfies both boundary conditions despite the
formed wave variablg=c~ 'z and the expansion afandv  rder of the equation, is

in the small parametar 2 in the manner of Cano$4d0] can
be found as suggested by Muri@}. This is straightforward, vo=[1+expz] 1, (4)
and since the results do not appear to have been presented o ) ]
elsewhere, we briefly consider this in the Appendix. Forwhere we have arbitrarily sef,(0)=3. Moving to the first-
small values ofp, i.e., when the disperser population is order termsp; satisfies the same equationigsso this also
small, this approach is not suitable, and this is the case weanishes, while the equation for is

will consider below.

V1,06, 01(1—200)=0 (5
Il. SMALL p WAVEFORM SOLUTION so that, setting ,(0)=0,
The success of the Canodsi),13 approach to finding 7
TWS's of the FE is due to the fact that the nonlinear term vl:m' (6)

vanishes at both boundariess+ +«, allowing an apparent
singular perturbation problem to be solved by regular perturyhich differs from the first-order term in the Canosa solu-

bation methods. Fortunately, we are able to exploit this asgo For smallp, as we consider here, andv, provide a

pect of Eqs(2) here, in a more direct manner not requiring 8good approximation to the waveforrfexcept, as for the
wave variable transformation. If we directly expanénduv Canosa FE solution. near—o. where both are close to

in the small parametep™? so that zero. Therefore, we only consider the second-order tagm
U= Unt DY+ DU - -+ which we do only to _show that the procedl_Jre we have fpl-
o PP ' lowed leads to nontrivial results for the disperser density.
B 1 Proceeding as before, we find that the equation for this quan-
v=vo+p 1+ pvot--e, @ tiyis
then equations fou; ,v; follow from Egs.(2). Since we must Upypt Uny+ 0o(1—00) =0 7)

haveug,u; =0 [14], these determine the boundary condition

vo(—>)=1; in addition we requireo()=0 andugr;=0  and we can anticipate that the homogeneous solution will
for all i>0 at the boundarie&s just notedu,;=0 for allz).  vanish if the particular solution satisfies the boundary condi-
Because the nonvanishing solution fois of second order in  tions as we expect because of the inhomogeneous term. The
the small parameter, the waveform can be well described bliomogeneous solution is the same as the solutionf@nd

vo andvq; nevertheless, we will also determing#0 to  u;, u,y=a+be % wherea andb are constants while the
show that the procedure we are using leads to a nontrivigbarticular solution isl,p=e"*In(1+¢€%) so thata=b=0 and

solution. U,=U,p . Since this term is 0O(p), we will not consider it
The equations foug,vq follow after substitution of Eq. further.
(3) into Egs.(2). For the former we findiy,,+ ug,=0 so that The above results clearly illustrate that a very small num-

Ug must be zerdthis is the equation that would result for the ber of dispersers, with density=0O(p), can still drive a
equation of diffusion, which is a linear parabolic equationpopulation wave with velocite=1+ p*? whenp<1. The
and does not admit a TWSas noted above, this is consistent population waveform is solely due to the nondispersing
with the requirement thati=0O(p). For vy, we havevy, population throughO(p¥d. In Fig. 1, we show the wave-
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form for p*?=0.1, as found above, and compare it with that 088
for p2=0.95 as found in the Appendix using the Canosa
approximation. The former is much steeper. The point of 0.96
inflection of both is at the origin, and the absolute value of
the slope therdthe steepnegsin the former case is 0.30 s 094
+0(p) and in the latter case is W4 O(1/c®)~0.13. As o
would be expected, when there are fewer dispersers the © ot 20
population towards the front of the wavex0) is decreased /
while that behind the wavez&0) is increased. 09 b
-
IV. GENERALIZED COOK MODEL L SR ——
0.0275 003 al(yr') 0.0325 0.035

We now consider a specific example that indicates the

need to extend the basic Cook model. Archeological data FIG. 2. C/Cgy as a function ofa for S(15), p=0.81; G15),
[15] regarding the expansion of agriculture into Europe indi-P=0-46; and @0), p=0.52 and7=25yr as used iri6,7]. Note
cate that the speed of the expansion wave waasl  thatC/Cey is independent ob.

+0.2 km/yr, considerably below the FE prediction Gf¢
=1.41 km/yr[6,7,15 found using values db and the popu-
lation growth rate based on anthropological studiés].
(Note, we are using dimensional values heFar the Cook
model,C=1 km/yr requiregp~0.175 for the same values o

with D—C?7/2>0. The plus sign preceding the square root
in the above equation has been selected so that this result
reduces to the proper limits when-0 and wherkR,—0. In

f the latter case we recover E@4) of Ref.[6]. The require-

the above parameters. As discussed in the next section, thisTaent that these limiting results are recovered allows us to

far below plausible estimates for eliminate much of the complicated an_aly3|s_ of R[éf]_ in
For the FE, generalization to include time-delay effectsSelecting the proper branches of the dispersion relation.

[6,7] leads to results for the expansion wavespeed describing

the Neolithic transition that are in close agreement with the V. COMPARISON WITH THE HISTORICAL RECORD

historical record. This approach can also be used to extend

the Cook model. The complete time-delayed model involve
space and time derivatives to all orders, but analytical resul%

for the approximation that only retains second derivative
have been showf6] to agree well with numerical results for
the former. We will use the latter approximation here as well

In proceeding, as noted above, it is convenient to us
dimensional variables. Following Ref$®], [7], we general-
ize Egs.(1) as

Ui+ (7/2)Uy=DU i+ p[F(U,V) + (72)F (U, V)],
(8a)

Vi=(1-p)F(U.V), (8b)
where F(U,V)=a(U+V)[1+(U+V)]. The densitiesU,
describing dispersers, and have been normalized to the
carrying capacitya is the population growth rate;is twice
the delay time, and the wave of advance is alongxtheis.
We will also useR;=ap andR,=a(1—p) below.

To find the speed of the advancing wa@,we look for
solutionsU=U(x—Ct)=U(z), V=V(2), and require that
near the leading edge where baihandV are small we have
U,Vxexphz Substituting into Eqs(8), with z now the sole
dependent variable, we obtain the dispersion relation

AN[DC—C3(7/2)]+\[C?+R,D—ar?C/2]+aC=0.
©)

Stability requires thax <0 and real so that it follows that the
minimum speed is
C?=[1+(ar/2)] ?{2aD+R,D[(ar/2)—1]
+aD(4R; +27R;R,) 3

(10

We next examine how well Eq10) compares with the
istorical record. Values of the parametarand r have been
iscussed in great detail in Ref$,7,16 and we will use
these values without further comment, so that we take

=0.032-0.003yr ! and r=25yr, the mean generation

ime. Values ofp can be based on the field observations of
Ethiopian shifting agriculturist groups that have been used to
estimateD previously[6,7,17,18. For purposes of compari-
son we use the values pffor three groups identified ifi8].
Denoting these a$15, G15, andG20, whereS indicates
Shiri andG indicates Gilishi and 15 and 20 denote the aver-
age age of each group, we hapéS15)=0.81, p(G15)
=0.46, andp(G20)=0.52; note that thep(G20) is aggre-
gated from two subgroups which provide a better picture of
generational mobility than either single grouy,18. These

13 ¢
G15
_—
125 b a0
12 b \
=
s
g 115}
a
11}
105 S
) . ,
0.0275 0.03 0.0325 0.035

a(yr")

FIG. 3. D/Dgy as a function ofa for the three groups studied
for which C=Cg), . The values of p for each group and the value of
7 are the same as used in Fig. 2.
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125 ¢ from the literaturd 17]. We use these values to directly cal-
S15 culate the wavespeed over the same ranga obnsidered
1 above. These results are shown in Fig. 4. The only values of
G20 C outside the accepted range are for &5 group. But, as
£ 075 G15 noted earlier, this group is not representative, and the values
E for the more representative20 fall within the acceptable
S o5t range[19] for a>0.030 yr *.
In summary, the incorporation of time-delay effects into
0.25 | the Cook model leads to results that compare well with the
historical record and also allow us to make use of additional,
0 ! | ) surrogate daté@values ofp) in describing the wave of expan-
0.0275 0.03 0.0325 0.035 sion during the Neolithic transition in Europe.
a(yr’)
APPENDIX

FIG. 4. C as a function ofa for the three groups studied. The
values ofD were found from the data given [18], see alsq17]; As Murray[2] has pointed out, for values pfsufficiently
D(S15)=21.53 knf/yr, D(G15)=11.57 knf/yr; and D(G20) large,c,? can be used in the manner of Can¢4d] as a
=12.24 kn%/yr [19] The values Op and 7 for each group are the Sma” parameter to flnd a perturbaﬂon Solutlon to H@_
same as used in Figs. 2 and 3. Some of these results, which are easily found, are presented
- ) . below since they do not appear to be in the published litera-
values ofp indicate that the Cook model without time delay -« and we have made use of them for comparative purposes

does not lead to values @ consistent with historical evi- (in Fig. 1). Changing the wave variable m=z/c, in lowest
dence, i.e., the value ¢ required is much too small. i S
order we find thatng=(uy+uvy)=1/(1+e*), the corre-

To begin we will make direct comparison with the results . ) o
of [6 7]9 using the same mgan values oD sponding Canosa FE solutidexcept that here is different

(=15.44 kn?/yr) anda (=0.032/yr) used there. Comparing SL_Jbstituting thi_s_back into the equation foy we find that, as

their result, Cey=2(aD)Y2(1+ar/2) [Eq. (24) of [6]] might be intuitively expectedug=pny so thatvy=(1

with the val’ueC found here we have ’ —p)ny. Forp near 1 we would expect that this approxima-
tion, as for the FE, is very good. To verify this we consider

C/Cey=T(a,p, 72 (1)  ny, which satisfies

where ['=(1/2)+ (Ry7/4)(1/2— 1/a7) + (1/4a*?) (4R, N1z +N1(1=2N0) = —PNoyryr (A1)
+27R;R,) 2 Sincerl is independent ob, Eq.(11) implies
that for givenr,D, the difference betwee@ found here and
in [6] can only depend oa andp. In Fig. 2, we show *? as
a function ofa andp for the groupsS15, G15, andG20 for & 267
the range ofa=0.032+0.003 yr ! considered in6,7]. As n,= P —In —
might be expected, the wavespeeds found here are somewhat (1+e*)? (1+e%)?
lower thanCgy,, but except for those values afandD for ] o )
which Cry<0.90 km/yr they all remain within the accepted S° that the correction to the total _den3|ty in _thls order is even
range of 0.86:C< 1.2 km/yr. Note also that using a slightly smaller than th_a_t for the FE solution. The_ disperser and non-
different value ofD from that used to determin@g, results disperser densities can also be found; since we do not make
in C=Cpy. Since the range dd used in[6,7] is quite large, US€ Of these we only state the result for (u;=n;~v,),
D=15.44+3.68 knf/yr, this comparison appears equally Which is

satisfactory. In Fig. 3, we show the ratio &f/Dgy as a ) )

which is identical to the corresponding FE equation with
=1. Here the solution is

(A2)

function ofa for which C=Cry,. v1=p(1—p) ¢ —In 482, + ¢’ —
A direct test of our results is also possible since values of (1+e?)?2 (1+e*)? (1+e?)?
D for the three groups considered can also be determined (A3)
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