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Traveling waves with dispersive variability and time delay
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~Received 29 January 2003; revised manuscript received 11 June 2003; published 24 September 2003!

We first determine an approximate traveling wave profile for the Cook model@J. Murray,Mathematical
Biology I: An Introduction~Springer, New York, 2002!, pp. 471–478# for the case in which the number of
dispersers is small relative to the number of nondispersers. The results are consistent with the previous
linearized wavefront analysis that predicts, counterintuitively, that relatively few dispersers can drive the
population expansion wave with a wavespeed not too different from that for the case of a single dispersing
population as described by the Fisher equation. The method of solution differs from that used in the latter case
since here the dimensionless wavespeed is close to unity. We next generalize the Cook model to include
time-delay effects. While the Cook model, like the Fisher equation, does not adequately describe the wave of
advance during the Neolithic transition in Europe, we show that the generalized Cook model provides a close
agreement with the historical record.
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I. INTRODUCTION

The paradigm for describing the expansion of a colon
ing or invading species is the Fisher equation~FE! @1–4#.
Traveling wave solutions~TWS’s! of this equation and a
variety of generalizations@5–10# have been studied and ap
plied in a number of ecological contexts. Despite consid
able attention, even the basic FE has resisted efforts to ob
an exact analytic solution with the single exception of t
special solution found@2# for dimensionless wavespeedc
55/A6, which is greater than the minimum speedcmin52
@11#. A great deal of success has been found with respec
the determination of qualitative properties of TWS’s for t
FE beginning with the seminal work of Kolmogoroffet al.
@5# and a surprisingly good perturbation solution has a
been found@10# using the inverse of the square of the dime
sionless wavespeed,c22, as the parameter of smallness.

In the FE description the variability of the population wi
regard to its dispersal can be accounted for by using a d
sion coefficient taken as an average computed from the
persal probability-versus-distance distribution@see, e.g., Eq.
~8! in @7##. This implies that in a population composed
dispersers and nondispersers the relative proportions of
of these subpopulations is space- and time-independen
different approach was taken by Cook@2# to account for
dispersive variability by considering a model in which t
proportion of dispersers is greatest at the wavefront. In
model the population explicitly consists of distinct subpop
lations consisting of dispersers and nondispersers, each
ing different birth rates. The resulting model has been st
ied in some detail@2# and like the FE many of its qualitativ
properties have been determined. In particular, the minim
wavespeed of a TWS,cmin511p1/2, with p<1 the probabil-
ity that a newborn is a disperser, follows from an analysis
the wavefront behavior that is more complicated than
quired for the corresponding FE result@2#. For large allow-
able values ofp, it has been pointed out@2# that approximate
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TWS’s can be obtained by the same method used by Ca
for the FE@10#; this is straightforward and does not lead
any surprises. We briefly present some of these results in
Appendix since they are relevant here for comparative p
poses and do not appear to have been presented elsew
Conversely, the results for smallp, i.e., when the population
consists of relatively few dispersers, do provide unexpec
results.

Whenp is small, the wavespeed is still slightly more tha
half the value of that for a population composed solely
dispersers and not the very small value that would be in
itively expected. In Sec. II, we describe the Cook model a
then in Sec. III we obtain a TWS solution for the case
small p where the Canosa perturbation solution is not ap
cable~the parameter of smallness would be close to uni!.
In Sec. IV, we generalize the Cook model by taking in
account time-delay effects@6,7# and use this model to obtai
the speed describing the wave of population advance du
the Neolithic transition in Europe. It has been shown pre
ously @6,7# that including such effects in the FE model lea
to good agreement with historical evidence for the wave
population advance during the Neolithic transition in Europ
We conclude in Sec. V by showing that the result for t
wavespeed found here for the generalized Cook model
agrees well with the historical record in describing t
Neolithic expansion in Europe.

II. COOK MODEL

The Cook model and many of its qualitative properties
discussed in the monograph by Murray@12# so we only
briefly summarize the results we require here. The popu
tion is assumed to be composed of two distinct subpop
tions, dispersers with densityu(x,t) and nondispersers with
densityv(x,t). These densities are described by FE’s w
distinct birth rates,r u ,r v , and no disperser diffusion. In di
mensionless units

x→x8F D

r u1r v
G1/2

,t→t8F 1

r u1r v
G ,u,v→Ku8,Kv8,
©2003 The American Physical Society12-1
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whereD is the diffusion coefficient for the dispersers,K is
the population carrying capacity, andp[@r u /(r u1r v)#,
these FE’s are

ut5uxx1p~u1v !@12~u1v !#, ~1a!

v t5~12p!~u1v !@12~u1v !#, ~1b!

where we have now dropped the primes for convenience.
a TWS we take z5x2ct with c the dimensionless
wavespeed and look for solutionsu(x,t),v(x,t)
→u(z),v(z) so that Eqs.~1! become

05cuz1uzz1p~u1v !@12~u1v !#, ~2a!

05cvz1~12p!~u1v !@12~u1v !#. ~2b!

As mentioned above, a detailed analysis of the lineari
wavefront equations@2# indicates that the wave speed
bounded below bycmin511p1/2. For large values ofp<1,
the waveform solution of Eqs.~2! in terms of the trans-
formed wave variabley5c21z and the expansion ofu andv
in the small parameterc22 in the manner of Canosa@10# can
be found as suggested by Murray@2#. This is straightforward,
and since the results do not appear to have been prese
elsewhere, we briefly consider this in the Appendix. F
small values ofp, i.e., when the disperser population
small, this approach is not suitable, and this is the case
will consider below.

III. SMALL p WAVEFORM SOLUTION

The success of the Canossa@10,13# approach to finding
TWS’s of the FE is due to the fact that the nonlinear te
vanishes at both boundaries,z56`, allowing an apparen
singular perturbation problem to be solved by regular per
bation methods. Fortunately, we are able to exploit this
pect of Eqs.~2! here, in a more direct manner not requiring
wave variable transformation. If we directly expandu andv
in the small parameterp1/2 so that

u5u01p1/2u11pu21¯ ,

v5v01p1/2v11pv21¯, ~3!

then equations forui ,v i follow from Eqs.~2!. Since we must
haveu0 ,u150 @14#, these determine the boundary conditi
v0(2`)51; in addition we requirev0(`)50 andu0v i50
for all i .0 at the boundaries~as just noted,u150 for all z!.
Because the nonvanishing solution foru is of second order in
the small parameter, the waveform can be well described
v0 and v1 ; nevertheless, we will also determineu2Þ0 to
show that the procedure we are using leads to a nontr
solution.

The equations foru0 ,v0 follow after substitution of Eq.
~3! into Eqs.~2!. For the former we findu0zz1u0z50 so that
u0 must be zero~this is the equation that would result for th
equation of diffusion, which is a linear parabolic equati
and does not admit a TWS!; as noted above, this is consiste
with the requirement thatu5O(p). For v0 , we havev0z
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1v0 (12v0)50, the identical zeroth-order equation satisfi
by the density in the Canosa expansion of the FE. The s
tion, which satisfies both boundary conditions despite
order of the equation, is

v05@11expz#21, ~4!

where we have arbitrarily setv0(0)5 1
2 . Moving to the first-

order terms,u1 satisfies the same equation asu0 so this also
vanishes, while the equation forv1 is

v1z1voz1v1~122v0!50 ~5!

so that, settingv1(0)50,

v15
zez

~11ez!2 , ~6!

which differs from the first-order term in the Canosa so
tion. For smallp, as we consider here,v0 andv1 provide a
good approximation to the waveform~except, as for the
Canosa FE solution, nearz→`, where both are close to
zero!. Therefore, we only consider the second-order termu2 ,
which we do only to show that the procedure we have f
lowed leads to nontrivial results for the disperser dens
Proceeding as before, we find that the equation for this qu
tity is

u2zz1u2z1v0~12v0!50 ~7!

and we can anticipate that the homogeneous solution
vanish if the particular solution satisfies the boundary con
tions as we expect because of the inhomogeneous term.
homogeneous solution is the same as the solution foru0 and
u1 , u2H5a1be2z, wherea and b are constants while the
particular solution isu2P5e2z ln(11ez) so thata5b50 and
u25u2P . Since this term is ofO(p), we will not consider it
further.

The above results clearly illustrate that a very small nu
ber of dispersers, with densityu5O(p), can still drive a
population wave with velocityc511p1/2 when p!1. The
population waveform is solely due to the nondispers
population throughO(p1/2). In Fig. 1, we show the wave

FIG. 1. Population as a function of wave variablez. ~----! n0

1p1/2n15v01p1/2v1 for p50.01; ~ ! n01cmin
22n1 for p50.9. In

both casescmin511p1/2.
2-2
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form for p1/250.1, as found above, and compare it with th
for p1/250.95 as found in the Appendix using the Cano
approximation. The former is much steeper. The point
inflection of both is at the origin, and the absolute value
the slope there~the steepness! in the former case is 0.30
1O(p) and in the latter case is 1/4c1O(1/c5)'0.13. As
would be expected, when there are fewer dispersers
population towards the front of the wave (z.0) is decreased
while that behind the wave (z,0) is increased.

IV. GENERALIZED COOK MODEL

We now consider a specific example that indicates
need to extend the basic Cook model. Archeological d
@15# regarding the expansion of agriculture into Europe in
cate that the speed of the expansion wave wasC51
60.2 km/yr, considerably below the FE prediction ofCFE
51.41 km/yr@6,7,15# found using values ofD and the popu-
lation growth rate based on anthropological studies@6,7#.
~Note, we are using dimensional values here.! For the Cook
model,C51 km/yr requiresp'0.175 for the same values o
the above parameters. As discussed in the next section, th
far below plausible estimates forp.

For the FE, generalization to include time-delay effe
@6,7# leads to results for the expansion wavespeed descri
the Neolithic transition that are in close agreement with
historical record. This approach can also be used to ex
the Cook model. The complete time-delayed model invol
space and time derivatives to all orders, but analytical res
for the approximation that only retains second derivativ
have been shown@6# to agree well with numerical results fo
the former. We will use the latter approximation here as w

In proceeding, as noted above, it is convenient to
dimensional variables. Following Refs.@6#, @7#, we general-
ize Eqs.~1! as

Ut1~t/2!Utt5DUxx1p@F~U,V!1~t/2!Ft~U,V!#,
~8a!

Vt5~12p!F~U,V!, ~8b!

where F(U,V)5a(U1V)@11(U1V)#. The densitiesU,
describing dispersers, andV have been normalized to th
carrying capacity,a is the population growth rate,t is twice
the delay time, and the wave of advance is along thex axis.
We will also useR15ap andR25a(12p) below.

To find the speed of the advancing wave,C, we look for
solutionsU5U(x2Ct)5U(z), V5V(z), and require that
near the leading edge where bothU andV are small we have
U,V}explz. Substituting into Eqs.~8!, with z now the sole
dependent variable, we obtain the dispersion relation

l2@DC2C3~t/2!#1l@C21R2D2at2C/2#1aC50.
~9!

Stability requires thatl,0 and real so that it follows that th
minimum speed is

C25@11~at/2!#22$2aD1R2D@~at/2!21#

1a1/2D~4R112tR1R2!1/2% ~10!
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with D2C2t/2.0. The plus sign preceding the square ro
in the above equation has been selected so that this r
reduces to the proper limits whent→0 and whenR2→0. In
the latter case we recover Eq.~24! of Ref. @6#. The require-
ment that these limiting results are recovered allows us
eliminate much of the complicated analysis of Ref.@2# in
selecting the proper branches of the dispersion relation.

V. COMPARISON WITH THE HISTORICAL RECORD

We next examine how well Eq.~10! compares with the
historical record. Values of the parametersa andt have been
discussed in great detail in Refs.@6,7,16# and we will use
these values without further comment, so that we takea
50.03260.003 yr21 and t525 yr, the mean generatio
time. Values ofp can be based on the field observations
Ethiopian shifting agriculturist groups that have been used
estimateD previously@6,7,17,18#. For purposes of compari
son we use the values ofp for three groups identified in@18#.
Denoting these asS15, G15, andG20, whereS indicates
Shiri andG indicates Gilishi and 15 and 20 denote the av
age age of each group, we havep(S15)50.81, p(G15)
50.46, andp(G20)50.52; note that thep(G20) is aggre-
gated from two subgroups which provide a better picture
generational mobility than either single group@17,18#. These

FIG. 2. C/CFM as a function ofa for S~15!, p50.81; G~15!,
p50.46; and G~20!, p50.52 andt525 yr as used in@6,7#. Note
that C/CFM is independent ofD.

FIG. 3. D/DFM as a function ofa for the three groups studied
for whichC5CFM . The values of p for each group and the value
t are the same as used in Fig. 2.
2-3
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values ofp indicate that the Cook model without time dela
does not lead to values ofC consistent with historical evi-
dence, i.e., the value ofp required is much too small.

To begin we will make direct comparison with the resu
of @6,7# using the same mean values ofD
(515.44 km2/yr) anda (50.032/yr) used there. Comparin
their result, CFM52(aD)1/2/(11at/2) @Eq. ~24! of @6##,
with the valueC found here we have

C/CFM5G~a,p,t!1/2, ~11!

where G5(1/2)1(R2t/4)(1/221/at)1(1/4a1/2)(4R1
12tR1R2)1/2. SinceG is independent ofD, Eq. ~11! implies
that for givent,D, the difference betweenC found here and
in @6# can only depend ona andp. In Fig. 2, we showI 1/2 as
a function ofa andp for the groupsS15, G15, andG20 for
the range ofa50.03260.003 yr21 considered in@6,7#. As
might be expected, the wavespeeds found here are some
lower thanCFM , but except for those values ofa andD for
which CFM,0.90 km/yr they all remain within the accepte
range of 0.80,C,1.2 km/yr. Note also that using a slightl
different value ofD from that used to determineCFM results
in C5CFM . Since the range ofD used in@6,7# is quite large,
D515.4463.68 km2/yr, this comparison appears equal
satisfactory. In Fig. 3, we show the ratio ofD/DFM as a
function of a for which C5CFM .

A direct test of our results is also possible since values
D for the three groups considered can also be determ

FIG. 4. C as a function ofa for the three groups studied. Th
values ofD were found from the data given in@18#, see also@17#;
D(S15)521.53 km2/yr; D(G15)511.57 km2/yr; and D(G20)
512.24 km2/yr @19#. The values ofp andt for each group are the
same as used in Figs. 2 and 3.
n-
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from the literature@17#. We use these values to directly ca
culate the wavespeed over the same range ofa considered
above. These results are shown in Fig. 4. The only value
C outside the accepted range are for theG15 group. But, as
noted earlier, this group is not representative, and the va
for the more representativeG20 fall within the acceptable
range@19# for a.0.030 yr21.

In summary, the incorporation of time-delay effects in
the Cook model leads to results that compare well with
historical record and also allow us to make use of addition
surrogate data~values ofp! in describing the wave of expan
sion during the Neolithic transition in Europe.

APPENDIX

As Murray @2# has pointed out, for values ofp sufficiently
large, cmin

22 can be used in the manner of Canosa@10# as a
small parameter to find a perturbation solution to Eqs.~2!.
Some of these results, which are easily found, are prese
below since they do not appear to be in the published lite
ture and we have made use of them for comparative purp
~in Fig. 1!. Changing the wave variable toz85z/c, in lowest
order we find thatn05(u01v0)51/(11ez8), the corre-
sponding Canosa FE solution~except thatc here is different!.
Substituting this back into the equation foru0 we find that, as
might be intuitively expected,u05pn0 so that v05(1
2p)n0 . For p near 1 we would expect that this approxim
tion, as for the FE, is very good. To verify this we consid
n1 , which satisfies

n1z81n1~122n0!52pn0z8z8 , ~A1!

which is identical to the corresponding FE equation withp
51. Here the solution is

n15
pez8

~11ez8!2
ln

4ez8

~11ez8!2
, ~A2!

so that the correction to the total density in this order is ev
smaller than that for the FE solution. The disperser and n
disperser densities can also be found; since we do not m
use of these we only state the result forv1 (u15n12v1),
which is

v15p~12p!F ez8

~11ez8!2
ln

4ez8

~11ez8!2
1

ez8

~11ez8!2G .

~A3!
w
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